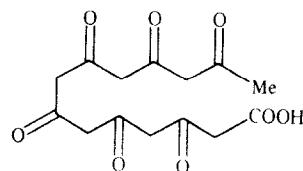
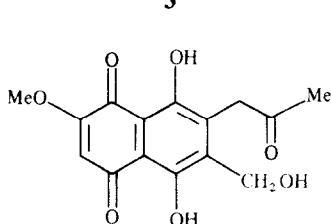
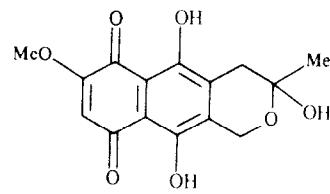
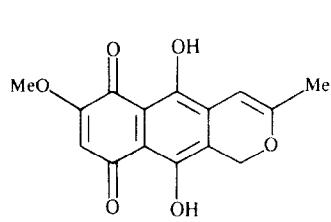
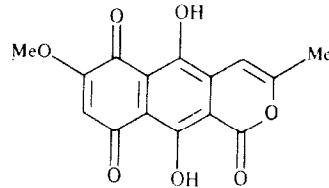
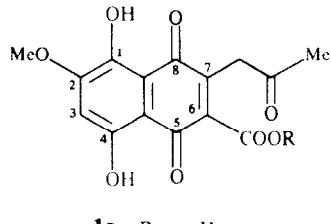


FUSARUBINOIC ACID, A NEW NAPHTHOQUINONE FROM THE FUNGUS *NECTRIA HAEMATOCOCCA*

DENISE PARISOT, MICHEL DEVYS* and MICHEL BARBIER*

Laboratoire de Cryptogamie, Bâtiment 400, Faculté des Sciences, 91405 Orsay Cedex, France; *CNRS, Institut de Chimie des Substances Naturelles, Avenue de la Terrasse, 91198 Gif sur Yvette Cedex, France

(Revised received 15 February 1988)







Key Word Index—*Nectria haematococca*; fungus; naphthoquinones; fusarubinoic acid.

Abstract—Fusarubinoic acid, a new naphthoquinone pigment, was isolated from the culture medium of *Nectria haematococca* (Berk. and Br.) Wr. The structure **1a**, established on the basis of MS and ¹H NMR determinations carried out on this compound and on the methyl ester **1b**, was confirmed by a partial synthesis starting from anhydrofusarubin. Fusarubinoic acid is a candidate precursor in the biosynthesis of fusarubin from the heptaketide **6**, as of the corresponding anhydrofusarubin lactone **2**.

INTRODUCTION

Several isolates of the fungal plant pathogen *Fusarium solani* (Mart. Sacc.) were reported to produce naphthoquinone pigments of the fusarubin family [1-12]. These pigments exhibited antimicrobial [13, 14], insecticidal [15] and phytotoxic [14, 16, 17] activities. The ascomycete *Nectria haematococca* (Berk. and Br.) Wr., is the perfect stage of *F. solani* [18]. During the course of the past six years, we have isolated 13 naphthoquinone

pigments released into the culture media of the wild or mutant strains [19-21] of *Nectria haematococca*. Recently, we considered the presence of naphthoquinone pigments more polar than fusarubin, and thus, 13-hydroxy-norjavanicin was found as a major compound in the culture medium of the 169 red mutant [22]. In the present publication, we report on the isolation from this strain 169, of a more polar new pigment for which the structure **1a** is established and the name of fusarubinoic acid proposed.

RESULTS AND DISCUSSION

The culture medium of the fungus *Nectria haematococca* strain 169 was investigated in order to find out new polar naphthoquinone pigments related to fusarubin. Solvent extractions at different pH followed by crystallisations, gave fusarubinoic acid **1a** (12 mg/l). The EI mass spectrum gave an ion at m/z 302 (10%) accompanied by significant fragments at m/z 287 [302 - 15]⁺ (20%); 259 [302 - 15 - 28]⁺ (100%); 43 [MeCO]⁺ (50%). That the ion at m/z 302 was not the molecular ion was established by the CI mass spectrum which gave an ion at m/z 321 [M + 1]⁺, (8%); with m/z 303 [M - 18] + 1, (98%); 277 [M - 44] + 1 (100%) as other significant peaks. The polarity of the substance on TLC and the [M - 44] ion in CIMS (-CO₂) suggested a carboxylic acid which could be lactonized in the apparatus to give the ion at 302. A methyl ester was prepared with an ether solution of diazomethane (new R_f on TLC's), showing a particularly characteristic mass spectrum EI. H: 334 [M]⁺ (10%); 302 [M - MeOH]⁺ (10%), 292 [M - 42]⁺ (10%), 260 [M - 42 - MeOH]⁺ (100%); 43 [MeCO]⁺ (50%). High resolution MS, calc. for C₁₆H₁₄O₈ 334.0685, found 334.0687. By standing in solution, or by warming, the substance gave a small amount of a less polar compound which was identified as anhydrofusarubin lactone **2** by direct comparison with the natural or synthetic product. Hence, the structure **1a** was proposed for this acid, which is easily lactonized into **2** due to the enolizable oxo group present in the acetyl aromatic substitution. The IR confirmed the presence of the carboxyl in **1a**, in particular by the bonded OH stretching absorption in the region 3300-2500 cm⁻¹ (broad band). The ¹H NMR allowed the attribution of the remaining protons in **1a** (C₁₅H₁₂O₈); all protons were also respectively attributed in the corresponding methyl ester **1b** (C₁₆H₁₄O₈). **1a**: 2.25, s, 3H, (MeCO); 3.98, s, 2H, (CH₂); 4.04, s, 3H, (MeO); 6.46, s, 1H (aromatic proton at C-3); phenolic protons exchanged (in CD₃OD); **1b** (CDCl₃): 2.22, s, 3H, (MeCO); 3.83, s, 2H, (CH₂); 3.90, s, 6H, (ester and ether OMe); 6.15, s, 1H (aromatic proton at C-3); 12.40, s, 1H, (phenolic OH at C-1); 12.85, s, 1H, (phenolic OH at C-4).

The final proof of the structure **1a** for the isolated acid came from direct comparison of the properties with a compound obtained through hydrolysis of anhydrofusarubin lactone **2**. Due to the minute amounts of anhydrofusarubin lactone available from natural sources [21], we synthesized this product by the diphenyl seleninic anhydride oxidation of the acetylated anhydrofusarubin **3** (30% yield). This oxidation of the methylene group of anhydrofusarubin **3** does not occur so readily, as the yield after 2 hr was only 10% and could not be improved after 6 hr (30%) of reflux. This result is in agreement with a biological origin of the anhydrofusarubin lactone isolated from *N. haematococca* rather than an oxidation occurring during extraction.

As a hypothesis, we propose that the biosynthesis of fusarubin **4** proceeds through the sequence **6** ---> **1a** ---> **5** ---> **4** ---> **3** with the alternative **1a** ---> **2**. However, such a hypothesis will require to be confirmed by biochemical assays carried out from labelled precursors. The existence of the acid **1a** as a direct precursor to fusarubin, as of the corresponding aldehyde, was hypothetically proposed by Arsenault in 1968 [4], but these two substances had not been so far isolated as natural products.

EXPERIMENTAL

Isolation of fusarubinoic acid. Cultures of *N. haematococca* strain 169 were carried out according to the methods previously described [20-21]. The naphthoquinones were extracted from the agar medium of 7-day-old cultures as follows: after discarding the mycelium with its cellophane membrane support, the agar cakes were taken out of the Petri dishes, wrapped in plastic bags, frozen at -20° for 24 hr and then thawed at 40° on a water-bath. Ca 0.981 of red liquid exuded from 60 frozen and thawed agar cakes. The exudate was filtered through a folded paper filter. The agar was further washed with H₂O, squeezed, the washings filtered and added to the exudate. The final vol. was adjusted to 1.5 l with H₂O (final pH 5.5). The aq. extract was concd to 1 l *in vacuo* and successively extracted with 3 x 1 l of hexane containing 10% EtOAc, then 4 x 1 l of EtOAc. These extractions gave a mixture of the less polar compounds (from anhydrofusarubin to 13-hydroxynorjavanicin), while more polar substances remained in the aq. residue. This aq. phase was acidified to pH 3 with HOAc and re-extracted with 3 x 1 l of EtOAc. The solvent was evapd *in vacuo* and the residue was taken up in CH₂Cl₂. After concn and standing overnight at 5°, a red pulverulent solid pptd. It was recrystallized from CH₂Cl₂, yielding 19 mg of nearly pure **1a** (still containing some traces of anhydrofusarubin lactone **2**), mp, 200-210° (with decomposition); the product is soluble in MeOH, fairly soluble in CH₂Cl₂, EtOAc, insoluble in hexane; R_f 0.15, SiO₂ TLC (Schleicher-Schüll), development by CHCl₃-MeOH (7:1).

By adding a soln of diazomethane in Et₂O and keeping for a few min, fusarubinoic acid **1a** gives quantitatively the corresponding methyl ester **1b**, crystallized as red needles from methanol, R_f 0.60 in the quoted conditions, mp, 187-190°, yield 100%.

*Partial synthesis of anhydrofusarubin lactone **2** and of fusarubinoic acid **1a**.* 30 mg of anhydrofusarubin diacetate (prepared by action of acetic anhydride in pyridine (4:5), 20 hr at 20°) were refluxed for 6 hr in dry C₆H₆ containing 150 mg of diphenylseleninic anhydride (a Fluka reagent). After concn of ca 75% of the C₆H₆ *in vacuo* the pptd reagent was filtered from the soln on a small cotton plug, washed with a few drops of C₆H₆ and the product was isolated by prep. silica gel TLC in hexane-CH₂Cl₂-MeOH (29:29:2), R_f 0.50, while the starting material had a R_f of 0.70 (obtained 9.5 mg (ca 30%)). MS, 386 C₁₉H₁₄O₉, [M]⁺ 3%; 344 [M - 42]⁺ 10%; 302, [M - 42 - 42]⁺ 100%; ¹H NMR, CDCl₃, 2.45, s, 6H, (MeCOO); 2.70, s, 3H, (Me); 3.95, s, 3H, (OMe); 6.30, s, 1H, (aromatic proton); 6.80, s, 1H, (olefinic proton). This acetate was saponified in 0.5 ml EtOH containing a few drops of a satd soln of K₂CO₃ in H₂O, stirring for 1 hr at room temp. After acidification by HOAc, and adding 1 ml H₂O, the anhydrofusarubin lactone **2** was extracted by 2 x 1 ml EtOAc, washed with H₂O, dried over Na₂SO₄, yield 95%. Prep. silica gel TLC in the above solvent, gave 6.7 mg of **2** (90%), R_f 0.40, dark purple amorphous powder, MS m/z 302 (M)⁺, 100%. ¹H NMR (CDCl₃), 2.40, s, 1H, (Me); 3.95, s, 3H, (OMe); 6.30, s, 1H, aromatic proton; 6.84, s, 1H, (olefinic proton). This product is identical in all respects to the anhydrofusarubin lactone **2** previously isolated [21] from the fungus *Nectria haematococca*. Oxidations of the acetylated **3** by diphenylseleninic anhydride, carried out for 2, 4 and 8 hr, gave respectively yields of 10, 20 and 32%. Elemental analysis, calc. for C₁₅H₁₀O₇, %, C: 59.61, H: 3.34, found C: 59.84, H: 3.66.

The anhydrofusarubin lactone **2** (5 mg in 2 ml MeOH at 60°) was hydrolysed into fusarubinoic acid **1a** by addition of 4 drops of KOH in MeOH (100 mg in 5 ml) and standing for 1 hr. After acidification by dilute HCl the product was extracted by CHCl₃, washing with H₂O, and drying over Na₂SO₄, yield 100%. This product was finally purified through silica gel TLC, development

with $\text{CHCl}_3\text{-MeOH}$ (7:1), R_f 0.15, yield 70%. The synthesized fusarubinoic acid **1a** and its corresponding methyl ester **1b** were identical in all respects to the natural compounds and their derivative (cf. theoretical part for details).

REFERENCES

1. Weiss, S. and Nord, F. F. (1949) *Arch. Biochem. Biophys.*, **22**, 288.
2. Ruelius, H. W. and Gauhe, A. (1950) *Liebigs Ann. Chem.* **569**, 38.
3. Arsenault, G. P. (1965) *Tetrahedron Letters* 4033.
4. Arsenault, G. P. (1968) *Tetrahedron*, **24**, 4745.
5. Kurobane, I., Vining, L. C., McInnes, A. G. and Smith, D. G. (1978) *Can. J. Chem.* **56**, 1593.
6. Kurobane, I., Vining, L. C., McInnes, A. G. and Walter, J. A. (1980) *Can. J. Chem.* **58**, 1380.
7. Kurobane, I., Vining, L. C., McInnes, A. G. and Gerber, N. N. (1980) *J. Antimic.* **33**, 1376.
8. McCulloch, A. W., McInnes, A. G., Smith, D. G., Kurobane, I. and Vining, L. C. (1982) *Can. J. Chem.* **60**, 2943.
9. Kimura, Y., Hamasaki, T. and Nakajima, H. (1981) *Agric. Biol. Chem.* **45**, 2653.
10. Tatum, J. H. and Baker, R. A. (1983) *Phytochemistry* **22**, 543.
11. Tatum, J. H., Baker, R. A. and Berry, R. E. (1985) *Phytochemistry* **24**, 3019.
12. Tatum, J. H., Baker, R. A. and Berry, R. E. (1987) *Phytochemistry* **26**, 795.
13. Ammar, M. S., Gerber, N. N. and Daniel, L. E. (1979) *J. Antimic.* **32**, 679.
14. Kern, H. (1978) *Ann. Phytopathol.* **10**, 327.
15. Claydon, N., Grove, J. F. and Pople, M. (1977) *J. Invertebr. Pathol.* **30**, 216.
16. Marcinkowska, J., Kraft, J. M. and Marquis, L. M. (1982) *Can. J. Plant Sci.* **62**, 1027.
17. Baker, R. A., Tatum, J. H. and Nemec S. Jr. (1981) *Phytopathology* **71**, 951.
18. Booth, C. (1984) in *The Applied Biology of Fusarium* (Moss, M. O. and Smith, J. E., eds), pp. 1-13. Cambridge University Press, Cambridge.
19. Parisot, D., Maugin, M. and Gerlinger, C. (1981) *J. Gen. Microbiol.* **126**, 443.
20. Parisot, D. (1988) *Exp. Mycol.* **12**, 35.
21. Parisot, D., Devys, M., Férezou, J. P. and Barbier, M. (1983) *Phytochemistry* **22**, 1301.
22. Parisot, D., Devys, M. and Barbier, M. (1987) *Microbios Letter* **36**, 129.

Phytochemistry, Vol. 27, No. 9, pp. 3004-3005, 1988.
Printed in Great Britain.

0031-9422/88 \$3.00 + 0.00
Pergamon Press plc.

4-ETHYLGALLIC ACID FROM TWO MIMOSA SPECIES

B. K. MEHTA, K. M. SAVITA SHARMA and AVINASH DUBEY

School of Studies in Chemistry, Vikram University, Ujjain 456 010, India

(Revised received 26 January 1988)

Key Word Index—*Mimosa hamata*, *Mimosa rubicaulis* Mimosaceae, flowers, 4-ethylgallic acid.

Abstract—4-Ethylgallic acid has been identified from the flowers of *Mimosa hamata* and *M. rubicaulis*.

INTRODUCTION

The roots and leaves of *Mimosa rubicaulis* are widely used in the treatment of piles, bruises and burns [1]. The leaf extract of *Mimosa hamata* had shown significant antimicrobial and fungistatic activities [2, 3]. From the leaves of *M. hamata*, ethyl gallate and gallic acid have been reported [4]. This paper deals with the isolation and structure determination of 4-ethylgallic acid.

RESULTS AND DISCUSSION

The benzene-ether (9:1) eluate of the flowers afforded silky crystals, mp 233-234° (decomposition), (ether) $\text{C}_9\text{H}_{10}\text{O}_5$, M^+ m/z 198 (98.07%), $\lambda_{\text{max}}^{\text{MeOH}}$ 218, 268 nm, diacetate mp 169°, (benzene), $\text{C}_{13}\text{H}_{14}\text{O}_7$. The IR spectrum showed strong absorptions at 3500, 1655, 1610 and 1270 cm^{-1} for acidic, hydroxyl, carbonyl and ether linkages, respectively, along with bands for benzene and